Self Adaptive Artificial Bee Colony for Global Numerical Optimization
نویسندگان
چکیده
The ABC algorithm has been used in many practical cases and has demonstrated good convergence rate. It produces the new solution according to the stochastic variance process. In this process, the magnitudes of the perturbation are important since it can affect the new solution. In this paper, we propose a self adaptive artificial bee colony, called self adaptive ABC, for the global numerical optimization. A new self adaptive perturbation is introduced in the basic ABC algorithm, in order to improve the convergence rates. 23 benchmark functions are employed in verifying the performance of self adaptive ABC. Experimental results indicate our approach is effective and efficient. Compared with other algorithms, self adaptive ABC performs better than, or at least comparable to the basic ABC algorithm and other state-of-the-art approaches from literature when considering the quality of the solution obtained. © 2012 Published by Elsevier B.V. Selection and peer review under responsibility of Information Engineering Research Institute
منابع مشابه
Elite Opposition-based Artificial Bee Colony Algorithm for Global Optimization
Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...
متن کاملAn improved self-adaptive artificial bee colony algorithm for global optimisation
In this paper we propose an improved self-adaptive artificial bee colony algorithm (IS-ABC) for accurate numerical function optimisation. A modified self-adaptive mechanism based on 1/5th success rule is embedded in the structure of ABC to enhance the speed of the algorithm. The proposed algorithm has been tested on various numerical benchmark functions including the non-traditional functions p...
متن کاملOPTIMIZATION OF RC FRAMES BY AN IMPROVED ARTIFICIAL BEE COLONY ALGORITHM
A new meta-heuristic algorithm is proposed for optimal design of reinforced concrete (RC) frame structures subject to combinations of gravity and lateral static loads based on ACI 318-08 design code. In the present work, artificial bee colony algorithm (ABCA) is focused and an improved ABCA (IABCA) is proposed to achieve the optimization task. The total cost of the RC frames is minimized during...
متن کاملA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize. An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees’ swarming around their hive is another example of swarm intelligence. Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based on the intelligent behavio...
متن کاملNumerical Survey of Vibrational Model for Third Aircraft based on HR Suspension System Actuator Using Two Bee Algorithm Objective Functions
This research explains airplane model with two vertical vibrations for airframe and landing gear system. The purpose of this work is to advance vibrational model for study of adjustable vibration absorber and to plan Proportional-Integration-Derivative approach for adapting semi active control force. The coefficients of this method are modified as stated by Bee multiobjective optimization using...
متن کامل